If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2-20u-1600=0
a = 1; b = -20; c = -1600;
Δ = b2-4ac
Δ = -202-4·1·(-1600)
Δ = 6800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6800}=\sqrt{400*17}=\sqrt{400}*\sqrt{17}=20\sqrt{17}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20\sqrt{17}}{2*1}=\frac{20-20\sqrt{17}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20\sqrt{17}}{2*1}=\frac{20+20\sqrt{17}}{2} $
| 0-(6m+8)=4(17-m) | | 155+10x=230x15x | | –2s−4=–1+9s−3 | | 52 =3x+42x−7 | | 6n+8(n-3)=-7(2n+7)-3 | | -5r-9=-7r+9 | | 3/4a−6=4+3a | | 6x-5=10x+9 | | –2(f−17.7)=–3.2 | | 2-90a=-8 | | 5x+14=4x+11 | | -5{4x-7}+8=3x | | 0-(6m+8=4(17-m | | 1)5q+6=-2q-2+q | | 300=-6(6-8x) | | 3/4y=y | | 4u-2u=2 | | 4d−2d=12 | | -9-2w=-3w | | 4x+4+3x-4=180 | | P+0.75x3=5.88 | | -3x+2(4x-4)=3 | | -2q=-0.4 | | 34a−6=4+3a | | 13x-60+9x-2=180 | | 10-2n=-8-5n | | 20=−8(x+2)−4 | | 22=54=-20+60x | | 29a=87=a | | 1.4x-4.12=2.5 | | -x+9+2x=2(2x-3) | | 9x+1=7x+35 |